
Shear stress in lattice Boltzmann simulations

Timm Krüger*
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

Fathollah Varnik
Interdisciplinary Centre for Advanced Materials Simulation, Stiepeler Str. 129, 44780 Bochum, Germany

and Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

Dierk Raabe
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

�Received 17 December 2008; published 7 April 2009�

A thorough study of shear stress within the lattice Boltzmann method is provided. Via standard multiscale
Chapman-Enskog expansion we investigate the dependence of the error in shear stress on grid resolution
showing that the shear stress obtained by the lattice Boltzmann method is second-order accurate. This conver-
gence, however, is usually spoiled by the boundary conditions. It is also investigated which value of the
relaxation parameter minimizes the error. Furthermore, for simulations using velocity boundary conditions, an
artificial mass increase is often observed. This is a consequence of the compressibility of the lattice Boltzmann
fluid. We investigate this issue and derive an analytic expression for the time dependence of the fluid density
in terms of the Reynolds number, Mach number, and a geometric factor for the case of a Poiseuille flow
through a rectangular channel in three dimensions. Comparison of the analytic expression with results of lattice
Boltzmann simulations shows excellent agreement.
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I. INTRODUCTION

The simulation of fluids using the lattice Boltzmann
method �LBM� has become a very important research field in
the last two decades �1–4� due to its simple and paralleliz-
able implementation and various fields of application �5–13�.
In the literature, the velocity field u of the fluid usually is the
central observable of interest. More recently, however, some
researchers are becoming interested in the shear stress field
���u, in particular when studying blood flow �14,15�.
High shear stresses may promote blood clotting, an effect
with quite diverse consequences such as stopping blood flow
through injuries �a desired effect� or blocking vessels
plagued by arteriosclerosis �16�. In the case of diffusive scal-
ing, the time step and the lattice constant obey �t��x2, and
the solution to the lattice Boltzmann �LB� equation con-
verges to the solution to the Navier-Stokes equations with a
second-order rate, i.e., the relative error eu of the velocity
scales with �x2. Noting that, within diffusive scaling, the
Mach number linearly scales with grid resolution, Ma��x,
one also obtains eu�Ma2.

To our knowledge, a systematic analysis of the conver-
gence behavior of the shear stress in the LBM has not been
conducted yet. It is often stated that the shear stress enters
the LB equation on the �2 level leading to a convergence
��x only. As will be shown in this report, this a priori state-
ment underestimates the accuracy of the LB simulations.

Velocity boundary conditions are very useful in the LBM.
They allow to impose a desired velocity field at the borders
of the computational domains. This is crucial, since the so-

lution to the Navier-Stokes equations critically depends on
the boundary conditions. One drawback of those boundary
conditions is the unphysical mass increase observed under
some circumstances. In this paper, we study this aspect via
analytic means. In particular, using the compressibility of the
LB fluid, we solve the Stokes equation for a rectangular
channel subject to a Poiseuille flow and show that the fluid
density exponentially grows with time. The rate of mass in-
crease is found to depend on the inverse Reynolds number
but scales as the third power of the Mach number. We dem-
onstrate the validity of analytic results through comparison
with LB simulations.

This paper consists of two parts. First, we investigate the
convergence of the shear stress in a laminar three-
dimensional �3D� Poiseuille flow. Moreover we address the
issue of optimum parameter choice for the LB simulations.
We especially search for a reasonable value for the relaxation
parameter � in view of the shear stress as the relevant ob-
servable. The second part deals with the global mass increase
in the simulations, which arises when velocity boundary con-
ditions for both the inlet and outlet of the flow are used. This
is particularly important for the correct computation of the
shear stress.

The paper is organized as follows. In Sec. II, the theoret-
ical background is provided. After a short introduction to the
LBM in Secs. II A–II C, the convergence behavior is dis-
cussed in Sec. II D. Velocity boundary conditions are briefly
dealt with in Sec. II E, and the influence of the initial simu-
lation parameters is addressed in Sec. II F. The mass increase
is analyzed in Sec. III. The numerical results are presented in
Sec. IV, followed by the conclusions in Sec. V.
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II. LATTICE BOLTZMANN METHOD

A. Basic concepts

The LBM has become a very efficient Navier-Stokes
solver. Its strength is based on its simple coding and its lo-
cality, which makes it intrinsically parallelizable. Only next-
neighbor information is required during the evaluation of the
LB equation.

The LBM can either be regarded as the discretized form
of the Boltzmann equation or as the extension of lattice gas
automata �17�. There is one major difference between the
LBM and other Navier-Stokes solvers: while conventional
methods directly solve the Navier-Stokes equations in terms
of the density � and the velocity u and approximate the dif-
ferential equations by finite differences, the LBM introduces
a number of q populations f i �i=0, . . . ,q−1� streaming along
a regular lattice in discrete time steps. Those populations can
be regarded as mesoscopic particle packets propagating and
colliding. For the entire LBM, only algebraic manipulations
of the populations are required. A more detailed presentation
of the LBM can be found in the literature �e.g., �8,9� and the
references therein�.

It is natural to consider all following equations in this
paper as being dimensionless. The physical dimensions are
recovered by multiplying the lattice quantities by appropriate
combinations of the lattice constant �x, the time step �t, and
the density � given in m, s, and kg /m3, respectively. In lat-
tice units, the time step and lattice constant are usually set to
unity.

The evolution of the populations f i is given by the LB
equation, which takes the form

f i�x + ci,t + 1� − f i�x,t� = −
1

�
�f i�x,t� − f i

eq�x,t�� �1�

in the Bhatnagar-Gross-Krook approximation. The equilib-
rium f i

eq is defined below. � is the relaxation time of the LB
fluid. At each time step, the populations propagate along the
q discretized velocity vectors ci to the next neighbors. At
those points they collide according to the right-hand side of
Eq. �1�. In this paper, we use a 3D model with 15 velocities,
designated D3Q15. This lattice and the corresponding veloc-
ity vectors ci are introduced in �3�. The dimensionless relax-
ation parameter � is connected to the speed of sound cs and
the kinematic viscosity � of the fluid by �=cs

2��−1 /2�. In
lattice units the sound speed takes the value cs

2=1 /3. In the
following we will use Latin indices for the populations f i and
Greek indices for spatial components, e.g., u�. Throughout
the paper, the Einstein sum convention is used.

The q populations f i carry the entire information of the
fluid, and the macroscopic observables such as density and
velocity can directly be recovered by

� = �
i=0

q−1

f i, �u = �
i=0

q−1

ci f i �2�

at every fluid lattice node. Also the deviatoric shear stress �
can be computed from the populations. We will come back to
this issue in more detail in Sec. II C. In the following we
drop the summation limits.

In Eq. �1� the equilibrium populations are given by

f i
eq = wi��1 + 3ci · u +

9

2
�ci · u�2 −

3

2
u · u� . �3�

This is closely related to the truncated form of the Maxwell
distribution, which is a very good approximation for small
Mach numbers. Thus, the LBM is only reasonable for small
velocities compared to sound speed. The q factors wi are the
lattice weights depending on the underlying lattice structure.
Their choice ensures the isotropy of the fluid, a necessity to
solve the Navier-Stokes equations asymptotically. For the
D3Q15 lattice, they are also given in �3�.

Besides the constraint of small velocities, the LBM suf-
fers from another shortcoming: the incompressibility of the
fluid gives way to a quasi-incompressibility indicated by the
ideal gas equation of state, p=cs

2�. As will be exposed in Sec.
III, this is the reason for the mass increase when using ve-
locity boundary conditions.

In order to show that the LB equation is equivalent to the
incompressible Navier-Stokes equations in the limit �x→0
and Ma→0, one performs a Chapman-Enskog analysis,
which will be briefly presented in Sec. II B.

B. Chapman-Enskog analysis

The idea behind the Chapman-Enskog analysis applied to
the LB equation is that different physical phenomena happen
on different time scales. While the advection of the fluid is
the fastest process, the diffusion of mass, momentum, and
energy happens on a slower time scale. For this reason, the
time derivative is usually split into two parts. One can also
extend this approach and take into account more time scales,

�t = ��t0
+ �2�t1

+ �3�t2
+ O��4� . �4�

Since the spatial variations of all processes are of the same
order, the gradient is not decomposed, �=��1. The popula-
tions are expanded about the equilibrium,

f i = f i
�0� + �f i

�1� + �2f i
�2� + �3f i

�3� + O��4� , �5�

where f i
�0�= f i

eq. The parameter �	1 can be identified as the
Knudsen number �the ratio of mean free path to a character-
istic length, usually the size of an obstacle or the entire sys-
tem�. The Taylor expanded LB equation �Eq. �1�� takes the
form

�
n=1



1

n!
��t + ci · ��nf i�x,t� = −

1

�
�f i�x,t� − f i

eq�x,t�� . �6�

The expansions for �t, �, and f i are inserted into Eq. �6�, and
the terms are sorted by the powers of �. The � equation reads

��t0
+ ci · ��f i

�0� = −
1

�
f i

�1�, �7�

the �2 equation
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�t1
f i

�0� + ��t0
+ ci · ��f i

�1� +
1

2
��t0

+ ci · ��2f i
�0� = −

1

�
f i

�2�,

�8�

and the �3 equation

�t2
f i

�0� + �t1
f i

�1� + ��t0
+ ci · ��f i

�2� +
1

2
��t0

+ ci · ��2f i
�1�

+
1

2
��t0

�t1
+ �t1

�t0
+ 2ci · ��t1

�f i
�0� +

1

6
��t0

+ ci · ��3f i
�0�

= −
1

�
f i

�3�. �9�

For recovering the Navier-Stokes equations in terms of � and
u, the first- and second-order Eqs. �7� and �8� and the same
equations multiplied by ci are summed over i. One can show
that this approach yields the four macroscopic equations

�t0
� + � · ��u� = 0, �t0

��u� + � · ��0� = 0, �10�

�t1
� = 0, �t1

��u� + �1 −
1

2�
� � · ��1� = 0. �11�

The tensor � has the components

��� = �
i

ci�ci�f i,

���
�0� = �

i

ci�ci�f i
�0�,

���
�1� = �

i

ci�ci�f i
�1�. �12�

ci� denotes the � component of the velocity vector ci. ���

will be related to the macroscopic momentum flux tensor in
Sec. II C. The combined form of the two time scales t0 and t1
finally reads

�t� + � · ��u� = 0,

�t��u� + � · ��uu� = − cs
2 � � + 2� � · ��S� . �13�

�=cs
2��−1 /2� is the kinematic viscosity of the LB fluid. The

shear rate tensor S has the components

S�� =
1

2
���u� + ��u�� . �14�

The incompressible Navier-Stokes equations read

� · u = 0, ��tu + � � · �uu� = − �p + 2�� � · S . �15�

In the incompressible limit �Ma→0 and �x→0�, Eqs. �13�
and �15� are equivalent, if we assume as equation of state
p=cs

2� for the LB fluid. This means that the LBM asymptoti-
cally solves the incompressible Navier-Stokes equations. For
a detailed Chapman-Enskog analysis we refer to �18�. It is
also possible to compute the macroscopic equations of
higher orders in �. In �19� the result for �3 is presented.

As a further comment, we point to nonisothermal lattice
models. The standard LBM, as presented in this paper, does

not satisfy the Galilean invariance principle when consider-
ing moments of order higher than 2. For the numerically
stable modeling of thermal systems, which depend on higher
moments, extended lattice structures have to be considered
�20–22�.

C. Shear stress in the lattice Boltzmann method

Fluids �liquids and gases alike� are described by the in-
compressible Navier-Stokes equations, cf. Eq. �15�, in the
limit of small Knudsen and Mach numbers. Those equations
can also be written in the form ��tu�=−��M�� with the total
momentum flux

M�� = p
�� + �u�u� − ���, �16�

where 
�� is the usual Kronecker symbol. The first term on
the right-hand side of Eq. �16� is the isotropic pressure and
the second one the momentum transfer due to mass transport.
The third term describes the momentum diffusion due to the
viscosity of the fluid. It is called the deviatoric shear stress. It
only vanishes if the velocity gradients are all zero or if the
entire fluid is rotating with a spatially constant frequency �as
to ensure that no relative motion occurs within the fluid�. In
a viscous fluid, momentum diffuses from regions with large
to regions with small momentum. If the fluid is incompress-
ible, this deviatoric shear stress tensor, from now on only
called shear stress tensor, takes a simple form,

��� = ����u� + ��u�� . �17�

�=�� is the dynamic viscosity. For Newtonian fluids, the
shear rate tensor S �Eq. �14�� and the shear stress tensor �
�Eq. �17�� are related through 2��S=�. Both tensors are
symmetric and traceless. The latter property holds as long as
the fluid is incompressible, since Tr S=� ·u. It is known that
some fluids show a shear-thinning or shear-thickening behav-
ior, i.e., the viscosity is a function of the shear rate �e.g.,
blood or honey�. If the fluid is Newtonian, viscosity is not a
function of the shear rate, and S and � differ only by a
constant factor. Since we restrict ourselves to the latter case,
unless otherwise stated, the terms “shear rate” and “shear
stress” can be used synonymously.

It follows from the Chapman-Enskog expansion that the
momentum flux tensor M from the Navier-Stokes equations
can be approximated by the second moments of the LB
populations. The equilibrium parts of the populations lead to
the pressure and the convective term in the momentum flux
tensor,

���
�0� = �

i

ci�ci�f i
�0� = cs

2�
�� + �u�u�. �18�

The shear stress is provided by

���
�1� = �

i

ci�ci�f i
�1� = −

�

3
�����u�� + ����u�� + �t0

��u�u���

� −
�

3�
���. �19�

Obviously, there appear some correction terms in Eq. �19�
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which need to be discussed. We will come back to this issue
in Sec. II D. The total Navier-Stokes momentum flux can be
approximated by �p=cs

2��,

M�� = p
�� + �u�u� − 2��S�� � ���
�0� + �1 −

1

2�
����

�1� ,

�20�

where �=cs
2��−1 /2� has been used.

At this point a difficulty arises. It is easy to separate the
equilibrium populations f i

�0�= f i
eq from the remaining correc-

tions, the nonequilibrium populations f i
neq= f i− f i

eq. But it is
not possible to compute the first-order populations f i

�1� as
stand-alone quantities. This means that f i

neq has to be used
instead of f i

�1�. Obviously, this additional approximation only
concerns the shear stress tensor. The remaining macroscopic
variables �density and velocity� are not influenced. Some-
times the tracelessness of the shear stress tensor is enforced
explicitly by writing �23�

��� = − �1 −
1

2�
��

i
�ci�ci� −


��

D
ci · ci� f i

neq, �21�

where D is the number of spatial dimensions. Due to the
approximation f i

�1�→ f i
neq and especially the influence of f i

�2�,
it is generally expected that the LBM result for the shear
stress converges with a first-order rate in the case of diffusive
scaling ��t��x2�—in contrast to the velocity, which has a
second-order accuracy. This convergence behavior is further
discussed in Sec. II D and tested in Sec. IV.

Up to this point we have not mentioned the special role of
the shear stress in the LB simulations: spatial derivatives on
a lattice are usually computed by using finite difference �FD�
schemes. The advantage of the LBM is that the shear
stress—although related to the gradient of the fluid
velocity—can directly be assessed locally, i.e., on each indi-
vidual lattice node, and independently of the velocity. No
information of neighbors is required, and the implementation
is straightforward. This is the strength of the LBM. Never-
theless, in order to have a comparison, we have examined in
Sec. IV both the shear stress obtained from the local ap-
proach given in Eq. �21� and a nonlocal finite difference
method. All finite differences in this paper are of second-
order accuracy and central, e.g.,

�ux

�y
�x,y,z� =

ux�x,y + 1,z� − ux�x,y − 1,z�
2

. �22�

D. Convergence of the shear stress

Knowing the Navier-Stokes equations and the macro-
scopic limit of the LB equation, the basic idea is to estimate
the error of the solution obtained by the LBM, as compared
to the Navier-Stokes solution. As also mentioned in Sec. I, in
the diffusive scaling, the relative error of the velocity is pro-
portional to Ma2 �see, e.g., �24� and references therein�. The
same is true for the density fluctuations, i.e., the compress-
ibility of the LB fluid also scales with Ma2. The convergence
behavior of the shear stress, on the other hand, is not obvious

and has to be deduced from the LB equation.
Since the equilibrium populations can be computed ex-

actly �in terms of the Maxwell truncated approximation�, the
equilibrium part ���

�0� �Eq. �18�� contains only compressibil-
ity and truncation errors of the same order as the velocity and
the density. Higher order terms of f i do not play a role, since
they do not appear in the equation. In the diffusive scaling,
the relative velocity and density errors are eu�Ma2 and e�

�Ma2 and, for this reason, the relative error of ���
�0� also

scales with Ma2.
Things are different for the shear stress ���

�1� in Eq. �19�.
We write the LBM shear stress as the Navier-Stokes shear
stress plus an error term,

���
�1� = −

�

3
����u� + ��u�� + E�1. �23�

It can be shown �18� that this error term reads

E�1 = − ���u�u���u� + �u�u���u� + u�u�����u��� .

�24�

The point here is that not only the errors of � and u� account
for the total deviation of the shear stress, but also the addi-
tional terms in E�1. For the relative error it follows that
e�1 =E�1 /���

�1� �Ma2, since the three relations u��Ma, ��

�Ma, and ����Ma3 hold. The first statement is obvious.
The second one can be understood by recalling the diffusive
scaling �x�Ma. When the grid is refined and �x decreased,
all spatial derivatives in lattice units are also decreased by
the same rate, i.e., ���1 /N��x. The last statement follows
from the second one and the fact that the LB fluid compress-
ibility scales with Ma2, i.e., the fluctuations of the density �
with respect to the mean density �̄ behave like ��− �̄� / �̄
�Ma2.

This indicates that the shear stress would converge with a
second-order rate, if the populations f i

�1� were known and
used for its computation. As we have stated before, it is not
possible to evaluate f i

�1�. In principle, the populations f i
�1� can

be computed from the equilibrium via Eq. �7�. This is not
practical, because information from next neighbors and dif-
ferent time steps would be necessary in order to evaluate this
equation. The LBM obviously would lose the advantage of
locality, and the shear stress could directly be computed us-
ing a finite difference scheme for the equation ���

=�����u�+��u�� in the first place, without bothering com-
puting f i

�1� at first and ���
�1� afterward. Hence, the first-order

terms f i
�1� are substituted by the nonequilibrium populations

in the simulations and ���
neq is computed instead of ���

�1�.
As a consequence, the influence of the higher order cor-

rections f i
��1� plays a role. Fortunately, the higher order

populations become less important with increasing order of
�. Hence, we focus only on the influence of f i

�2� and check
whether its contribution may destroy the second-order con-
vergence of the shear stress. One can write

���
neq = −

�

3
����u� + ��u�� + E�1 + E�. �25�

E� is the error due to the higher order corrections, especially
f i

�2�. Thus, we are interested in the convergence behavior of
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���
�2� =�ici�ci�f i

�2�. From the Chapman-Enskog analysis we
know the population f i

�2�, cf. Eq. �8�, and thus

−
1

�
���

�2� = �t1
���

�0� + �1 −
1

2�
���t0

���
�1� + ��R���

�1� � , �26�

where R���=�ici�ci�ci�f i is the third moment. From Eq. �7�
it follows

R���
�1� = − ���t0

R���
�0� + ��P����

�0� � �27�

with the fourth moment P����
�0� =�ici�ci�ci�ci�f i

�0�. Since the
standard equilibrium Eq. �3� is truncated after the second
order in the velocity, all velocity moments larger than the
second order are not physically well defined. Indeed, in the
framework of the truncated equilibrium, all equilibrium mo-
ments larger than two scale with �u2�Ma2.

At this point we have to admit that it is a tedious task to
exactly compute ��2�. Actually, this is not necessary, because
the focus is put on the convergence behavior and thus the
scaling with the Mach number. The following considerations
are straightforward if one recalls that u��Ma, ���Ma, and
����Ma3: From the above observations we conclude that all
terms in Eq. �26� are of order Ma4. Additionally, Eqs. �10�,
�11�, �18�, and �19� have been used. This means that both
error terms E�1 and E� are of fourth order in the Mach num-
ber, whereas ��1� itself is second order. As a consequence,
the relative error of the deviatoric shear stress, as computed
from Eq. �25�, is quadratic—similar to the errors of the ve-
locity and the density. This is a quite encouraging result.
However, as will be shown below, the second-order conver-
gence is very sensitive to additional error sources. In particu-
lar, our simulations clearly show that the convergence behav-
ior strongly depends on the type of boundary conditions. In
Sec. IV A, our numerical results are presented and compared
to the above qualitative findings.

E. Geometry and boundary conditions

For the simulations in this paper we have chosen a simple
3D geometry, the laminar 3D Poiseuille flow in a channel
with rectangular cross section. The fluid enters the numerical
grid at x=1 and exits at x=Nx. The channel has height H
�along z axis�, width W �along y axis�, and length L= �Nx
−1��x. The Reynolds and Mach numbers are

Re =
Hû

�
, Ma =

û

cs
. �28�

û is the center velocity of the flow.
The velocity field for an infinitely long channel with rect-

angular cross section in 3D is known analytically. The
Navier-Stokes equations reduce to the Poisson-type equation
��ux�y ,z�=�p /�x=const. It can be solved by expanding the
solution in basis functions. One possible solution �25� is

ux�y,z� =
ûx

�
	z�H − z�

−
8H2

�3 �
n

odd
1

n3

cosh�n��y − W/2�/H�
cosh�n�W/2H�

sin�n�z

H
�


�29�

with the origin of the coordinate system at one corner of the
channel. The pressure gradient has been eliminated in favor
of the center velocity ûx, �p /�x=−2�ûx /�, where � is a
normalization factor depending on the geometry. For the case
of the rectangular channel described above,

� =
H2

4
−

8H2

�3 �
n

odd
1

n3

sin�n�/2�
cosh�n�W/2H�

� H2. �30�

Another equivalent solution �25� is

ux�y,z� =
ûx

�

32

�4�
n,m

odd
1

nm

sin
n�y

W
sin

m�z

H

�n/W�2 + �m/H�2 �31�

with the same value of �.
Both solutions have advantages and disadvantages. The

first solution has only one expansion coefficient and con-
verges faster. However, while convergence is fast in the re-
gion near y=W /2, the no-slip condition at y=0 and y=W is
poorly reproduced. The second solution, on the other hand,
shows very good convergence near the entire border, since
the basis functions vanish there. However, two expansion
coefficients are necessary. Moreover, the convergence is
slower when approaching the center of the channel. There-
fore, when computing the analytic solution, we divide the
system into an inner part, where Eq. �29� is used, and the
wall region, where the exact solution is computed via Eq.
�31�. The shear rate tensor S can directly be calculated from
both solutions.

The accuracy of the simulation is quantified using the
common L2 norm for the relative error

eu =�� �uan − usim�2

� �uan�2
, �32�

where the sum takes into account all lattice nodes in the
numerical grid. The errors of the two relevant shear compo-
nents Sxy and Sxz are defined similarly.

The no-slip condition at the side walls is realized by a
fullway bounce-back rule. The walls are located halfway be-
tween the fluid and the wall nodes, and the accuracy is of
second order �26�. For the inlet and outlet we have used
periodic boundary conditions in one part of the simulations
and velocity boundary conditions in the other part. In the
case of periodic boundary conditions, the flow is driven by a
constant and homogeneous body force �27�. This force can
be implemented by adding wici ·F /cs

2 to the right-hand side
of Eq. �1�, where F is the body force pointing in x direction.

SHEAR STRESS IN LATTICE BOLTZMANN SIMULATIONS PHYSICAL REVIEW E 79, 046704 �2009�

046704-5



We have examined both the velocity boundary conditions
proposed by Skordos �28� and by Latt �29�. The velocity
profiles on the inlet and outlet are fully developed. Imple-
menting velocity boundary conditions is not as straightfor-
ward as using the bounce-back rule. The underlying idea is
the following: if the fluid velocity u is given on a straight
wall, the populations f i have to be computed from u. This is
in general a problem, since the number of equations avail-
able is smaller than the number of unknown populations. For
this reason, some closure relations are assumed, which com-
plete the set of equations. There are various possibilities to
do this. A good review of the velocity boundary conditions
can be found in �29�. Using an explicit method, it boils down
to the equation

f i = f i
eq��,u� + f i

�1�, f i
�1� = −

wi��

cs
2 Qi��S��, �33�

with Qi��=ci�ci�−cs
2
��. Following this general approach,

the boundary conditions also show a second-order conver-
gence. This is important in order not to spoil the quality of
the overall simulation. It depends on the method how f i

�1� is
estimated. Skordos uses a finite difference method for the
velocity gradient, while Latt approximates the unknown val-
ues of f i

�1� with the help of the known ones. The density � at
the inlet and outlet can be recovered by

� =
1

1 + u�

�2�+ + �0� , �34�

where u� is the projection of the boundary velocity u on the
boundary normal, pointing outside the numerical grid, i.e.,
u� is negative at the inlet and positive at the outlet. This way,
the correct pressure gradient is recovered. �+ is the sum of all
populations leaving the numerical grid �those populations are
known�, and �0 is the sum of all populations streaming par-
allel to the boundary plane �those are also known�.

F. Influence of the relaxation parameter

The accuracy of a LB simulation depends on the LBM
itself, the initial conditions, the boundary conditions, and
also on the simulation parameters. There are four relevant
quantities which have to be set up for every simulation: the
Reynolds number Re which is fixed by the physical system,
the Mach number Ma of the simulation, the dimensionless
relaxation parameter �, and the lattice constant �x or, equiva-
lently, the number N of fluid lattice nodes along one axis �we
use Nz�. Using Reynolds and Mach numbers from Eq. �28�
yields an important relation between those four dimension-
less parameters,

Ma

Re
=

1
�3

� −
1

2

Nz
. �35�

Assuming that the Reynolds number is fixed, there are two
degrees of freedom in the choice of the parameters. Although
the Mach number in reality is uniquely defined by the speed
of sound, it can be varied in the LBM. As long as the Mach
number is small, Ma�O�0.1�, it does not influence the phys-

ics of the system. This way, in a simulation the value of Ma
can be adjusted in order to increase the accuracy or shorten
the computing time.

The second-order convergence of the LB equation can
only be realized, if the Mach number and the lattice constant
are decreased simultaneously. The diffusive scaling fulfils
this requirement �24,30�, and it is ensured that the incom-
pressible Navier-Stokes equations are recovered in the limit
of �x→0. The disadvantage of this method is that by reduc-
ing the Mach number the required number of time steps is
increased �recall that �t��x2�. As a consequence, halving
the lattice constant and the Mach number simultaneously re-
duces the error by a factor of 22 but increases the simulation
time by a factor of 24 �2D� or 25 �3D�.

Equation �35� plays an important role by the selection of
simulation parameters. In order to see this, we note that the
choice of the Reynolds number and the Mach number is
closely linked to the physical problem of interest. In the dif-
fusive scaling, on the other hand, the Mach number uniquely
sets the lattice resolution �x and the time step �t �recall that
�x�Ma and �t�Ma2�. Thus, for fixed values of Re and Ma,
the only freedom is in a variation of the relaxation parameter
� or, equivalently, the number of grid points Nz.

In many cases of interest, however, the Reynolds number
and the Mach number can be varied in a reasonable range
without changing the basic physics of the problem. When
studying problems, where sound propagation does not play a
role, it is often possible to increase the Mach number as long
as density fluctuations remain negligibly small. This brings
the advantage of using larger grid resolutions and hence sig-
nificantly reducing the computation time. A similar philoso-
phy also applies to the choice of the Reynolds number: when
studying laminar flow problems, Re can be increased as long
as velocity fluctuations remain negligibly small. A more
complete description of these and similar ideas can be found
in �31�.

Therefore, the question arises which initial choice of the
four parameters appearing in Eq. �35� is optimal, meaning
which choice leads to the smallest possible error at constant
simulation time. There is a very detailed analysis of the LB
error in �24�. The authors point out that the accuracy of the
LBM strongly depends on the choice of the relaxation pa-
rameter �. This can also be seen in �19�. The important point
is that the error has a minimum for � in a region between 0.8
and 1.0, depending on the Reynolds number. Setting � too
close to 1/2 or larger than 1 results in avoidable inaccuracies
of the simulations.

In order to verify the results presented in �24� and to see
whether the velocity error and the shear stress error behave
similarly we have set up a series of simulations according to
the following paradigm:

�1� Set Re to the desired value.
�2� Choose a reasonable value for Ma.
�3� There is only one free parameter left. Set up a series of

simulations for different grid sizes N. This automatically
fixes � according to Eq. �35�. It is wise to start for � around
0.9.

�4� Calculate the relative errors eu and eS of the simula-
tions. The curves eu��� and eS��� both feature a minimum,
which can be found by varying N and thus �.
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�5� The minimum value �opt is the best choice for the
simulations. It should be kept fixed, if the resolution is to be
changed. This directly leads to the diffusive scaling and a
second-order convergence.

There are some remarks: in the simulations, the minimum
value of � is not necessarily the minimum value of the LBM,
because the accuracy of the boundary conditions also de-
pends on � and—in general—in another way than the LBM.
The bounce-back rule for example introduces a slip velocity
at the walls, which depends on the relaxation parameter �26�.
Additionally, the quality of the velocity boundary conditions
depends on the Mach number. For this reason, the location of
the optimum value �opt is also a function of Ma for larger
Mach numbers. We present our results for �opt in Sec. IV B.

III. MASS INCREASE

Some wall boundary conditions do not obey local mass
conservation. This shortcoming can be removed by applying
modified boundary conditions �32,33�. But even if the mass
is conserved at the walls locally, it is possible that the total
mass of the numerical grid changes with time �9,32�. This
effect is caused by inlet and outlet velocity boundary condi-
tions. Due to the equation of state of the lattice fluid, p
=cs

2�, a pressure gradient is equivalent to a density gradient,
leading to a larger inlet than outlet flux, and mass is accu-
mulating in the system. There are possibilities to oppose this
effect, e.g., the use of velocity inlet/pressure outlet boundary
conditions or incompressible LB models, both for steady and
unsteady flows �34,35�. Mass increase is fully absent also in
the case of a body force driven flow with periodic boundary
conditions. However, we are interested in the consequences
of the mass increase, if it is not avoided in the first place.

The reader should be reminded that L, W, and H are the
length, width, and height of the channel, whereas Nx, Ny, and
Nz are the number of fluid lattice nodes along the length,
width, and height of the channel, respectively. In lattice
units, obviously L=Nx−1, W=Ny and H=Nz hold, as long as
inlet/outlet are defined by velocity boundary conditions and
the side walls by the bounce-back rule. The side walls them-
selves are not contained in Ny and Nz, so the total lattice—
including fluid and walls—has dimensions Nx� �Ny +2�
� �Nz+2�.

For a 3D rectangular Poiseuille flow, the velocity profiles
at the inlet and the outlet have to be equal, u=uin=uout, re-
sulting in a net total mass increase per time step

Ṁ ª

�M

�t
= − ��Aū � 0, �36�

where �� is the density difference between the outlet and the
inlet �and thus negative�, A is the cross-section area and ū the
mean velocity on the cross sections. Note that ū and û are
proportional to the Mach number and that û / ū is constant for
a given channel geometry. In a 2D Poiseuille flow one finds
û / ū=3 /2. In three dimensions, on the other hand, this ratio
depends on the aspect ratio W /H of the cross section.

In an ideal LB simulation of Poiseuille flow along the x
axis, the density is only a function of x. Furthermore only the
velocity component ux does not vanish. It is constant along

the x axis and depends on y and z. In this case, the Stokes
equation for the LB fluid reads �assuming that steady state is
reached, i.e., �tu=0�

� ln �

�x
= −

��2u

cs
2 = −

6�û

�
= const, �37�

whose integrated form reads

� = �0 exp�−
6�û

�
x� . �38�

� is the normalization factor from Eq. �30�. The pressure
difference between inlet �x=1� and outlet �x=Nx� is

�� = �0	exp�−
6�û

�
Nx� − exp�−

6�û

�
�
 . �39�

The inlet and outlet densities are given only implicitly by Eq.
�34�. It is, therefore, not possible to set the velocity profiles
and the densities on the inlet/outlet simultaneously. For small
values of 6�ûNx /�, the density gradient can be approximated
by the expression from Sec. II E: −6�0�ûL /�, i.e.,

�p

L
= −

2�0�û

�
. �40�

This is valid whenever the Mach number is small and the
density near �0 everywhere.

The total mass in the numerical grid can be estimated by

M �
 dV� = A

1/2

Nx+1/2

dx�

= − A�0
�

6�û
exp�−

3�û

�
�	exp�−

6�û

�
Nx� − 1
 .

�41�

Putting everything together results in the expression

Ṁ

M
=

6�ūû

�

1 − exp	6�û

�
�Nx − 1�


1 − exp�6�û

�
Nx� exp�3�û

�
� �

6�ūû

�
.

�42�

The approximation in the second step is justified if Nx and �
are sufficiently large, which is always the case for an appro-
priate lattice resolution.

Since the geometry and the Reynolds number shall be
fixed here, the Mach number can only be adjusted by chang-
ing the kinematic viscosity � according to ��Ma so that
finally

M�Nt� = M0 exp�CgMa3Nt/Re� . �43�

The mass after Nt time steps depends on the Mach and Rey-
nolds numbers and also on a geometry factor
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Cg =
2
�3

H

�

ū

û
�

1

H
, �44�

which is uniquely fixed by the shape of the channel. The
Mach number enters the equation with a power of 3. It is an
observation that usually CgMa3 /Re	1, but for a large num-
ber Nt of time steps the mass increase may enter its expo-
nential regime. When examining the validity of Eq. �43�, one
must pay attention to the following aspects:

�1� The equation is not valid at the very beginning of the
simulations, but only when a “steady state” has been reached
in which the pressure gradient is fully developed. Here,
steady state means that the velocity does not change in time,
although the density is not constant. For this reason, the first
iteration steps are neglected when comparing simulation re-
sults with the analytic expression Eq. �43�.

�2� Modifying the Mach number over a wide range, but
keeping Re and N fixed requires changing � over a wide
range. One has to be careful that � stays in a region, where
the boundary conditions and the LBM work reliably.

We will show in Sec. IV that once the above consider-
ations are taken into account, Eq. �43� produces excellent
results. Another question is how a change in the simulation
parameters influences the mass increase. If Re is changed,
this has to be compensated by varying the Mach number, the
grid resolution or the kinematic viscosity or any combination
of those. Suppose the following independent transforma-
tions: Re→aRe, Ma→bMa and Nz→cNz. Since Cg�1 /Nz,
Nt�Nz

2 /�, 1 /�=Re / �Nzû� and 1 / û�1 /Ma, one finds that
CgMa3Nt→b2CgMa3Nt. For fixed aspect ratio of the channel
dimensions, this means that the mass increase is directly re-
lated to the Mach number and is independent of the other
parameters. The compressibility �controlled by the Mach
number� and the mass increase are tightly connected.

The mass increase actually raises a problem: The fluid
velocity within the LBM is defined in such a way that a
global variation in the mass does not change its value, as
long as the pressure gradient is unchanged and the distribu-
tion of the populations is affected only by a velocity-
independent prefactor, cf. Eq. �2�. The definition of the shear
stress in Eq. �21� on the other hand is sensitive to the global
mass, since ���. If the nonphysical mass increase is signifi-
cant, the shear stress tensor must be corrected for this effect.

There are in principal two options for this correction.
First, one may take measures to compensate the mass in-
crease in the first place. Second, one may allow the mass
increase, but make sure that all observables remain unaf-
fected. We assume that the shear rate tensor Eq. �14� is not
affected by the mass increase, since it does not depend on the
density. Hence it is reasonable to calculate this quantity in-
stead of the shear stress tensor. Due to 2��S=�, one finds,
starting from Eq. �21�,

S�� = −
3

2��
�

i
�ci�ci� −


��

3
ci · ci� f i

neq. �45�

In order to check whether this approach is reasonable, we
have computed the relative error eS of the shear rate as a
function of time in a “steady state” simulation with signifi-

cant mass increase. The results are discussed in Sec. IV C.

IV. SIMULATIONS AND RESULTS

We investigate the velocity and shear stress error behavior
in a laminar 3D Poiseuille flow using both periodic boundary
conditions with body force and velocity boundary condi-
tions. We are interested in the convergence of the numerical
results toward the analytical solutions. Moreover, we deter-
mine the optimum choice of the relaxation parameter, de-
pending on whether the velocity or the shear stress is the
relevant observable. Those results are presented in Secs.
IV A and IV B.

The computing time of a LB simulation can be reduced if
the Mach number is increased. The reason is that less time
steps are necessary to reach the final state of the flow. This is
very important whenever large Reynolds numbers are given,
because simulations with high Reynolds number require a
large numerical grid. However, the increase in the Mach
number results in a larger numerical error due to compress-
ibility effects and, in combination with velocity boundary
conditions, it leads to the violation of mass conservation in
the system. This mass increase in a steady Poiseuille flow is
examined qualitatively and quantitatively in Sec. IV C.

The presented benchmark analyses are not intended to and
cannot cover the above-mentioned aspects in every detail.
Rather, our aim is a fundamental understanding of the dis-
cussed observations. Nevertheless, it would be an interesting
task for future work to extend the above studies to other
situations such as complex geometries as well as nonsteady
flows, issues not considered in this work.

A. Convergence

In Sec. II D, we have argued that the convergence of the
shear stress should in principle have a �x−2 or Ma−2 behav-
ior. This prediction has been tested with a series of simula-
tions at fixed Re=12.5 and ��0.855. The size of the numeri-
cal boxes has been 16�18�18 up to 128�130�130. The
errors of the velocity and the shear component Sxy are shown
in Fig. 1 as a function of the lattice resolution.

There are three relevant observations. First, the relative
error eu of the velocity is significantly smaller than that of
the shear rate. This is no surprise, since there are many error
terms in Eq. �25�.

The second and most interesting observation is the slope
of the convergence. For the velocity, it is found to be very
close to −2 for all boundary conditions; see Table I. It shows
that the LBM and the boundary conditions are second-order
accurate with respect to the velocity. This has been shown
many times in the literature. For the shear rate Eq. �45� on
the other hand, we have found slopes strongly depending on
the boundary conditions. The slope for the periodic boundary
condition is −1.88 and nearly reaches the predicted value of
−2. The velocity boundary conditions have flatter slopes, cf.
Table I, but are clearly better than first-order convergence.

Our interpretation is that indeed the shear stress is a
second-order accurate observable, but the convergence is
detrimentally influenced if velocity boundary conditions are
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used. Since the implementations of those conditions usually
are only self-consistent on the � and �2 level, additional er-
rors appear affecting the shear stress.

Another interesting point is that the error of the shear
stress obtained from the finite difference scheme is not sig-
nificantly smaller than that of the local scheme. The slopes

for the finite difference shear rate are around −1.5 for all
investigated boundary conditions.

Let us briefly compare the simulations: the velocity
boundary conditions yield a much better accuracy for the
velocity field than the periodic boundary condition �nearly 1
order of magnitude�. For the shear stress, things are different:
The periodic boundary condition with a body force gives rise
to the highest accuracy and the best convergence, but Skor-
dos’ method is not significantly worse. Latt’s velocity bound-
ary condition is less accurate, but a 1% accuracy can be
found even at small resolutions. Additional information on
the accuracy of the shear stress is provided in Sec. IV B.

Some remarks have to be made here. Steady Poiseuille
flow has the simplest possible geometry. The error of the
shear stress is given by the terms E�1 and E� in Eq. �25�. It is
expected that those quantities can be much larger in arbitrary
flow geometries and nonsteady flows, although the second-
order convergence should be preserved. The small relative
errors eS=0.0001. . .0.01 which have been recovered in these
benchmark tests may be a consequence of the high symmetry
of the Poiseuille flow. For this reason, more benchmark tests
for other, more complex geometries, for which the analytical
solution is known, should be performed. Practically, the
second-order rate is not assumed to be recovered as long as
velocity boundary conditions are used.

It is an open question whether there exists a global slip
velocity in our simulations, which could be subtracted from
the velocity profiles. If the slip velocity is constant over the
cross section of the flow, i.e., if the slip velocity is the same
at edges and corners, it would be important to identify its
value and subtract it from the velocity field. Such a correc-
tion is not included in the present work.

B. Initial parameters

For the Reynolds numbers 1, 10 and 100, the optimum
values of the relaxation parameter � have been investigated
according to the procedure described in Sec. II F. The error
curves e��� are depicted in Figs. 2 and 3, and the optimum
values along with the minimum errors are given in Table II.

From a theoretical point of view, �opt depends on the value
of the Reynolds number �24�. The analysis in �24� however
does only account for the error due to the LBM. The behav-
ior of the boundary conditions is not included. Those effects
are clearly visible in our results.

For the velocity in Fig. 3 we have found that velocity
boundary conditions are in principle more accurate than a
body force driven flow. At larger Reynolds numbers, how-
ever, when the Mach number is increased in order to shorten
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FIG. 1. Relative L2 errors of the velocity ux and the shear stress
component Sxy �both local and FD� as functions of the dimension-
less system size N: the velocity slope is close to −2 for all boundary
conditions, whereas the shear stress slope is between −1.4 and −1.9
�local via Eq. �45�� and around −1.5 �FD�. The slope values are
collected in Table I.

TABLE I. Slope values of the velocity ux and shear rate Sxy

errors for the three boundary conditions �BC�. The corresponding
figures are presented in Fig. 1.

BC ux Sxy �LB� Sxy �FD�

Periodic −1.99 −1.88 −1.49

Latt −1.94 −1.40 −1.52

Skordos −1.97 −1.62 −1.56

SHEAR STRESS IN LATTICE BOLTZMANN SIMULATIONS PHYSICAL REVIEW E 79, 046704 �2009�

046704-9



the simulation time, the velocity boundary conditions be-
come more inaccurate. But even at the comparably large
value Ma=0.20, the accuracy of all three methods is similar.
It strikes the reader that the relaxation parameter should be
somewhere between 0.9 and 1.0 in order to minimize the
error eu. The exact value depends on the boundary condition
and it will most likely also depend on the geometry and the

Mach number �which we have not tested�. In Table II, the
locations of the minima are given.

The behavior of the relative shear error eS is presented in
Fig. 2. Both methods �shear locally from Eq. �45� and a finite
difference scheme� can directly be compared. The local shear
error is smallest for the body force driven flow, especially at
larger Mach numbers. This observation matches the previous
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FIG. 2. Behavior of the relative shear error eS��� �left column: from Eq. �45�, right column: from FD� for Reynolds numbers 1 �top�, 10
�middle�, 100 �bottom�.
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discussion in Sec. IV A, where it is argued that the velocity
boundary conditions give rise to additional errors. Both ve-
locity boundary conditions behave differently. Skordos’
method is more accurate than Latt’s scheme. While the
former boundary condition produces errors similar to the
body force driven flow at Ma=0.04, the latter method begins
to become inaccurate. Finally, at Ma=0.20, the error ob-
tained from Latt’s method is nearly 2 orders of magnitude

larger than that of the body force driven flow, and also Sko-
rdos’ methods becomes less accurate. The position of the
minimum error is at ��0.9 for the reasonable simulations
and becomes larger when the boundary conditions are inac-
curate. The reason is that large � is equivalent to high grid
resolution �or small �x� thus reducing the error related to a
higher Mach number. From the plots in Fig. 2 we learn that
the accuracy of the shear suffers from velocity boundary
conditions at relatively large Mach numbers.

This shortcoming can be avoided if a finite difference
scheme for the shear is used. Here, the relative error is
tightly connected to the error of the velocity, since the shear
is interpolated from the velocity information. It may be sur-
prising that the minimum error of the shear from a finite
difference scheme is not significantly smaller than that of the
shear obtained from Eq. �45�. So there is no a priori advan-
tage of using a finite difference scheme, but—at larger Mach
numbers—the finite difference scheme is clearly superior, at
least for the velocity boundary conditions.

In conclusion we briefly summarize the most important
observations:

�1� The minimum error is always located somewhere
around the interval �0.8,1.1� for the relaxation parameter �,
depending on which quantity is computed and which method
is used for this. It is therefore very reasonable to use a relax-
ation parameter out of this interval for simulations. ��0.9 is
a compromise for most simulations.

�2� For the velocity field, velocity boundary conditions
are more accurate up to Ma=0.20.

�3� One has to act with caution, if the error of the shear
shall be minimized. Velocity boundary conditions become
increasingly inaccurate for large Mach numbers, if Eq. �45�
is used. A finite difference scheme overcomes this disadvan-
tage, but the implementation is more difficult.

�4� Keeping the Mach number small in general is recom-
mended, but not always practical in large Reynolds number
simulations. If a simulation requires a large Reynolds num-
ber, one should decrease � and increase Ma reasonably, keep-
ing in mind which observable �u or �� is of most interest.

C. Mass increase

A series of simulations with Reynolds numbers 5, 10, 15,
and 20 and Mach numbers between 0.05 and 0.3 have been
performed in a channel with dimensions 20�22�22. In do-
ing this we follow two points: �i� the verification of Eq. �43�
and �ii� the influence of the mass increase on the observables,
especially the shear rate. The geometry factor Cg for the
simulations can be calculated using Eq. �44�. The number of
time steps in all the simulations is Nt=5�104. Both the inlet/
outlet boundary conditions proposed by Skordos and by Latt
have been tested separately. Through the relaxation param-
eter � the Mach number is adjusted.

The results for the time evolution of the mean density and
the total mass increase after 5�104 time steps as a function
of the Mach number are presented in Fig. 4. As a matter of
fact, the time evolution of the mean density is well described
by a simple exponential �top plot in Fig. 4�. The recovered
exponent for the presented example and the theoretical value

0.7 0.8 0.9 1 1.1
relaxation parameter τ

0.0001

0.001

0.01

0.1

re
l.

ve
lo

ci
ty

er
ro

r
e u

body force
Latt
Skordos

Re = 1, Ma = 0.01

0.7 0.8 0.9 1 1.1
relaxation parameter τ

0.0001

0.001

0.01

re
l.

ve
lo

ci
ty

er
ro

r
e u

body force
Latt
Skordos

Re = 10, Ma = 0.04

0.7 0.8 0.9 1 1.1
relaxation parameter τ

0.00001

0.0001

0.001

0.01

re
l.

ve
lo

ci
ty

er
ro

r
e u

body force
Latt
Skordos

Re = 100, Ma = 0.20

(a)

(b)

(c)

0.00001

FIG. 3. Behavior of the relative velocity error eu��� for Rey-
nolds numbers 1 �top�, 10 �middle�, 100 �bottom�.

SHEAR STRESS IN LATTICE BOLTZMANN SIMULATIONS PHYSICAL REVIEW E 79, 046704 �2009�

046704-11



only differ by 8%. An even better agreement can be found
for the Mach number dependence �bottom plot in Fig. 4�. We
present a logarithmic plot of ln � versus the Mach number.
��0 is defined as the ratio of the total mass at time step

5�104 and 1�104. Using the mass at t=1�104 instead of
t=0, transient effects are avoided. The predicted exponent of
3 is nearly obtained in all simulations. As a result, the simple
model presented in Sec. III is able to describe the mass in-
crease during the simulation very well.

Some remarks should be made at this point. In Fig. 4,
only the results using Latt’s scheme are shown. The reason is
that the results from Skordos’ scheme basically are equiva-
lent. We have observed, however, that the finite difference
scheme by Skordos becomes unstable for values of � larger
than �1.8. This is not very alarming, since usually LB simu-
lations are performed at ��1. The large values of � have
been necessary to increase the Mach number for fixed Re and
lattice size. Especially it has been shown that Skordos’
scheme is superior to other boundary conditions when simu-
lating flows with very large Reynolds numbers �29�. We
would also like to underline that this analysis only makes
sense as long as all parameters are in a range, where the
LBM and the boundary conditions are reliable. Increasing �
even further leads to stronger deviations from the Ma3 law
�data not shown�, but this behavior is of no practical interest.

The other important observation is that the relative errors
Eq. �32� of the velocity and the shear rate do not depend on
time, once steady state has been reached. Here, “steady state”
is understood in the sense that, despite the increase in fluid
density with time, the velocity field becomes time indepen-
dent. The possibility to define steady state alone shows that
the mass increase does not affect the velocity. In fact, the
errors of the velocity and the relevant shear component Sxy

remain constant within at least five significant digits. This
observation even holds if the mass increase becomes huge, as
for example in the case of Re=5 and Ma=0.20, where the
mean density is �̄�5.4�104 after 5�104 time steps. The
mass increase is, therefore, effectively harmless in the case
of Poiseuille flow, which is a very encouraging result. It is an
open question whether the mass increase affects the velocity
and shear rate profiles in time-dependent simulations, since
the distribution of the constantly instreaming mass may in-
terfere with the time evolution of the physical system.

TABLE II. Overview of the locations �opt and the relative errors e��opt� of the minima for different
boundary conditions �BC� and Reynolds and Mach numbers.

Velocity Shear �LB� Shear �FD�

Re Ma BC �opt e��opt� �opt e��opt� �opt e��opt�

Periodic 0.99 9�10−4 0.87 5�10−3 1.02 5�10−3

1 0.01 Latt 0.94 3�10−4 0.86 5�10−3 0.92 4�10−3

Skordos 0.94 3�10−4 0.87 5�10−3 0.92 4�10−3

Periodic 0.98 1�10−4 0.86 9�10−4 1.05 1�10−3

10 0.04 Latt 0.93 3�10−5 0.92 5�10−3 0.93 8�10−4

Skordos 0.93 3�10−5 0.86 1�10−3 0.93 8�10−4

Periodic 0.98 5�10−5 0.86 3�10−4 NA NA

100 0.20 Latt 0.94 8�10−5 NA NA 0.97 7�10−4

Skordos 0.91 9�10−5 0.99 2�10−3 0.95 6�10−4
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FIG. 4. Mean density �̄ �top� in lattice units for Re=5 and Ma
=0.15 as a function of time step: The simulation data �theoretical
value CgMa3 /Re=1.17�10−4� is excellently reproduced by a
simple exponential with CgMa3 /Re=1.26�10−4. Mass ratios ln �
ª ln�M50000 /M10000� �bottom� for different Re as function of the
Mach number: The slopes are close to the theoretical value of 3.
Note that ln � itself is plotted logarithmically.
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V. CONCLUSIONS

The shear stress—beside the velocity—has become an
important observable of computer simulations, but an analy-
sis of its convergence behavior has still been missing. We
have shown that the shear stress obtained by the lattice Bolt-
zmann method is second-order accurate and thus behaves
similar to the velocity. For a body force driven flow, a slope
parameter of −1.9 has been found. Velocity boundary condi-
tions, on the other hand, can spoil this convergence rate, but
the effective scaling remains clearly better than first order
�−1.4 and −1.6 for Skordos’ and Latt’s boundary conditions
�28,29�, respectively�. For this reason, it is not justified to
denote the shear stress a first-order quantity. It must be noted
that the high symmetry of the Poiseuille flow may addition-
ally decrease the error of the shear rate, but—from a theo-
retical point of view—the second-order nature should not be
affected by a modified geometry or time-dependent flows.
This statement remains to be tested.

Like all numerical computations, lattice Boltzmann simu-
lations require the setup of some basic dimensionless param-
eters, including the relaxation time �, the Mach number Ma
and the numerical grid size N. The choice of those param-
eters has a very significant impact on the accuracy of the
simulations. Supporting Holdych et al. �24�, we come to the
conclusion that it is in general recommended to use a relax-
ation parameter ��0.9. This value leads to small velocity
and shear errors. The accuracy of the simulations also de-
pends on the Mach number, if velocity boundary conditions
are used. Those boundary conditions become less reliable at

large Mach numbers and may spoil especially the results for
the shear stress. If large Mach numbers cannot be avoided,
using a finite difference scheme for the shear rate is a good
alternative, since it is more robust under those circum-
stances.

The use of velocity boundary conditions in the lattice
Boltzmann method can lead to an artificial increase of the
mass in the numerical grid. For three-dimensional Poiseuille
flow, we have demonstrated theoretically that the mass in-
crease is only a function of the Mach number. If velocity
boundary conditions at both inlet and outlet are used, the
mass increase can only be reduced by choosing a smaller
value for the Mach number. From a simple theoretical con-
sideration it follows that the mass increase scales with Ma3.
This result has been confirmed with success in our simula-
tions. The increase in the mass of the numerical grid does not
influence the values of the velocity and the shear rate, since
their definitions do not contain the local density. Although
the mass increase is not physical, it basically poses no threat
to the quality of the simulations. However, the velocity
boundary conditions proposed by Skordos have been ob-
served to become numerically unstable, if the relaxation pa-
rameter � is larger than �1.8.
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